

IMPACT OF RADAR DATA ASSIMILATION ON WRF SIMULATIONS OF THE ANIENE FLOOD

Ida Maiello*

 R. Ferretti , S. Gentile, M. Montopoli , E. Picciotti G. Giuliani and F. S. Marzano

***** *Department of Engineering and Environmental Physics, University of Basilicata, Centre of Excellence CETEMPS, Department of Physics - Atmospheric Sciences University of L'Aquila*

OUTLINES

1. INTRODUCTION

- 2. A HEAVY RAINFALL CASE: THE ANIENEEVENT
- 3. RADAR DATA AND MODEL DESCRIPTION
- 4. 3D-VAR IN RADAR DATA ASSIMILATION
- 5. MODEL CONFIGURATION ANDEXPERIMENTS CARRIED OUT
- 6. RESULTS AND FUTURE DEVELOPMENTS

INTRODUCTION

•Assimilation of Doppler radar data may improve the small-scale structures in the initial conditions, reduce the model spin-up time, andenhance the short-time NWP skills.

• The objective of this study is to investigate **the impact of the 3DVAR data assimilation of Dual-Doppler radar data (radial velocity and reflectivity) for a heavy rainfall case: the Aniene event, occurred during May 19-22, 2008 in the urban area of Rome.**

•Sensitivity to scale lengths and coefficients relative to the calculation of the reflectivity has been done. Model results are presented in term of bot<mark>h</mark> reflectivity and accumulated rainfall, and statistical estimators.

RADAR DATA

PYLON OF 50 METERS IN MONTE MIDIA

MAIN TECHNICAL CHARACTERISTICS:

SITE: height 1660 m, 42.38° lat, 13.32° lon

ANTENNA: parabolic reflector with a radome, 2.44 m diameter, horizontal linear polarization

TRANSMITTER AND RECEIVER:

 magnetron, with a power of maximum 250 kw at 5.64 ghz with a PRF of 250 hz and 787 (intensity mode), 885 and 1180 (velocity mode)

RANGE AND MAXIMUM VELOCITY:

480/120 km intensity/velocity mode

MEASURED PARAMETERS:

 Z (reflectivity), Vr (radial velocity), σVr (spectrum broadness)

MODEL DESCRIPTION

3D-VAR IN RADAR DATA ASSIMILATION

Z = a Rb in dBz adiabatic assumption, including vertical velocity increments in the this is a balanded eq. Based on continuity, hydrostatic and Analysis

default values are : a=2.04 10⁴, b=1.75•**OBSERVATION OPERATOR FOR DOPPLER RADIAL VELOCITY**

Mawng eaftiaie rets iestimaterinfinal Moratre dividia id Radar (Montopoli et al.,2009) :velocity

<u>**OBSERVATION OPERATOR FOR DORPLER REFLECTIVITY**</u>

to estimate precipitation intensity

•**RICHARDSON'S LINEARIZED EQUATION**

•**DUDHIA'S WARM RAIN PROCESS**

to include the four major processes of the hydrometeors cycle

RESULTS:OBSERVED AND SIMULATED REFLECTIVITY

Convective cells 16 LDT 20 May '08

exp 1
 EXPLE CONTRADAR REFLECTIVITY
 Reflectivity (**b**)
 Reflectivity (**b**)
 Perrain helpht AMSL

RADAR REFLECTIVITT
Feat: 8.00 h
Reflectivity ()
Horizontal wind vectors
Terrain height AMSL

RESULTS: OBSERVED AND SIMULATED REFLECTIVITY $\begin{array}{ll} \textbf{Valid: } 2200 \text{ UTC Due} & \textbf{20} \text{ list: } 0600 \text{ UTC True} & \textbf{20} \text{ Iday 05} \\ \textbf{sk } k\text{--Index} = 27 & \textbf{27} \text{ } 99 \text{ (0000 LDT Fred 21 May 09)} \\ \textbf{sk } k\text{--index} = 27 & \textbf{27} \end{array}$ Fost: 16.00 h
Reflectivity ()
Herizontal wind vectors

Stratiform rainfall 00 LDT 21 May '08

Init: 0600 UTC Tue 20 May 06
 Valid: 2200 UTC Tue 20 May 06 (0000 LDT Wed 21 May 08) at k-index =
at k-index

 $\begin{tabular}{ll} \hline \textbf{Wald: } 2200~\textbf{UTC}~\textbf{Tuc}~\textbf{200}~\textbf{UTC}~\textbf{Tuc}~\textbf{201}~\textbf{May}~\textbf{05}\\ \textbf{Wald: } 2200~\textbf{UTC}~\textbf{Tuc}~\textbf{20}~\textbf{May}~\textbf{06}\\ \textbf{at}~\textbf{k}-\text{Index}=&36\\ \textbf{at}~\textbf{k}-\text{Index}=&36 \end{tabular}$ Fost: 16.00 h
Feficotivity ()
Berizontal wind vectors **Terroin height AMSI**

MAXIMUM TELTOR

exp2

 $\begin{tabular}{ll} \hline & \textbf{Init: } 0600 \text{ UTC Tue } 20 \text{ May } 08 \\ \hline \textbf{Mult: } 2200 \text{ UTC Tue } 20 \text{ May } 08 \\ \textbf{alt: } -\text{Index = } 36 \\ \textbf{alt: } k\text{-index = } 36 \end{tabular}$

STATISTICAL INDICATORS

$$
ACC = \frac{d+a}{a+b+c+d} \qquad FAR = \frac{b}{a+b}
$$

$$
FBIAS = \frac{b+a}{c+a} \qquad EGTS = \frac{a-R}{a+b+c-R}
$$

$$
RMS = \sqrt{\frac{\sum_{i}^{N} (obs_i - \text{mod}_i)^2}{N}}
$$

CONTINGENCY TABLE

 POSITION OF THE 93 RAIN GAUGING STATIONS FROM WHICH THE DATA DERIVES

STATISTICAL RESULTS:6-h accumulated rainfall

STATISTICAL RESULTS:12-h accumulated rainfall

CONCLUSIONS

- Good ability of the model to reproduce both local convection and large scaleprecipitation using "cycling run mode", in particular for the experimentsobtained from 3h-DA CYCLE.
- Among all experiments, 4th one seems to be that better reproduce the event, both concerning reflectivity and accumulated rainfall.
- The statistical estimators clearly show a better performance of the experiments using a scale-length factor smaller than 1.0 , that is the 3rd and 4th experiments.

FUTURE DEVELOPMENTS

- Improvement of the DA cycle strategy.
- Further tuning of length-scale factors.
- •BE matrix for all domains.

THANK YOU