Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
PICS
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Uber, M., Vandervaere, J.-P., Zin, I., Braud, I., Heistermann, M., Legoût, C., Molinié, G. and Nord, G.
Abstract:
The Cévennes–Vivarais region in southern France is prone to heavy rainfall that can lead to flash floods which are one of the most hazardous natural risks in Europe. The results of numerous studies show that besides rainfall and physical catchment characteristics the catchment's initial soil moisture also impacts the hydrological response to rain events. The aim of this paper is to analyze the relationship between catchment mean initial soil moisture θ˜ini and the hydrological response that is quantified using the event-based runoff coefficient ϕev in the two nested catchments of the Gazel (3.4 km2) and the Claduègne (43 km2). Thus, the objectives are twofold: (1) obtaining meaningful estimates of soil moisture at catchment scale from a dense network of in situ measurements and (2) using this estimate of θ˜ini to analyze its relation with ϕev calculated for many runoff events. A sampling setup including 45 permanently installed frequency domain reflectancy probes that continuously measure soil moisture at three depths is applied. Additionally, on-alert surface measurements at ≈10 locations in each one of 11 plots are conducted. Thus, catchment mean soil moisture can be confidently assessed with a standard error of the mean of ≤1.7 vol % over a wide range of soil moisture conditions. The ϕev is calculated from high-resolution discharge and precipitation data for several rain events with a cumulative precipitation Pcum ranging from less than 5 mm to more than 80 mm. Because of the high uncertainty of ϕev associated with the hydrograph separation method, ϕev is calculated with several methods, including graphical methods, digital filters and a tracer-based method. The results indicate that the hydrological response depends on θ˜ini : during dry conditions ϕev is consistently below 0.1, even for events with high and intense precipitation. Above a threshold of θ˜ini=34  vol % ϕev can reach values up to 0.99 but there is a high scatter. Some variability can be explained with a weak correlation of ϕev with Pcum and rain intensity, but a considerable part of the variability remains unexplained. It is concluded that threshold-based methods can be helpful to prevent overestimation of the hydrological response during dry catchment conditions. The impact of soil moisture on the hydrological response during wet catchment conditions, however, is still insufficiently understood and cannot be generalized based on the present results.
Reference:
Uber, M., Vandervaere, J.-P., Zin, I., Braud, I., Heistermann, M., Legoût, C., Molinié, G. and Nord, G., 2018: How does initial soil moisture influence the hydrological response? A case study from southern FranceHydrology and Earth System Sciences, 22, 6127-6146.
Bibtex Entry:
@Article{Uber2018,
  author        = {Uber, M. and Vandervaere, J.-P. and Zin, I. and Braud, I. and Heistermann, M. and Lego\^ut, C. and Molini\'e, G. and Nord, G.},
  title         = {How does initial soil moisture influence the hydrological response? A case study from southern France},
  journal       = {Hydrology and Earth System Sciences},
  year          = {2018},
  volume        = {22},
  number        = {12},
  pages         = {6127-6146},
  month         = nov,
  abstract      = {The Cévennes–Vivarais region in southern France is prone to heavy rainfall that can lead to flash floods which are one of the most hazardous natural risks in Europe. The results of numerous studies show that besides rainfall and physical catchment characteristics the catchment's initial soil moisture also impacts the hydrological response to rain events. The aim of this paper is to analyze the relationship between catchment mean initial soil moisture θ˜ini and the hydrological response that is quantified using the event-based runoff coefficient ϕev in the two nested catchments of the Gazel (3.4 km2) and the Claduègne (43 km2). Thus, the objectives are twofold: (1) obtaining meaningful estimates of soil moisture at catchment scale from a dense network of in situ measurements and (2) using this estimate of θ˜ini to analyze its relation with ϕev calculated for many runoff events. A sampling setup including 45 permanently installed frequency domain reflectancy probes that continuously measure soil moisture at three depths is applied. Additionally, on-alert surface measurements at ≈10 locations in each one of 11 plots are conducted. Thus, catchment mean soil moisture can be confidently assessed with a standard error of the mean of ≤1.7 vol % over a wide range of soil moisture conditions.
The ϕev is calculated from high-resolution discharge and precipitation data for several rain events with a cumulative precipitation Pcum ranging from less than 5 mm to more than 80 mm. Because of the high uncertainty of ϕev associated with the hydrograph separation method, ϕev is calculated with several methods, including graphical methods, digital filters and a tracer-based method. The results indicate that the hydrological response depends on θ˜ini : during dry conditions ϕev is consistently below 0.1, even for events with high and intense precipitation. Above a threshold of θ˜ini=34  vol % ϕev can reach values up to 0.99 but there is a high scatter. Some variability can be explained with a weak correlation of ϕev with Pcum and rain intensity, but a considerable part of the variability remains unexplained. 
It is concluded that threshold-based methods can be helpful to prevent overestimation of the hydrological response during dry catchment conditions. The impact of soil moisture on the hydrological response during wet catchment conditions, however, is still insufficiently understood and cannot be generalized based on the present results.},
  copublication = {8: 2 De, 6 Fr},
  doi           = {10.5194/hess-22-6127-2018},
  owner         = {hymexw},
  timestamp     = {2018-12-17},
  url           = {https://www.hydrol-earth-syst-sci.net/22/6127/2018/},
}