Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
PICS
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Seyfried, L., Estournel, C., Marsaleix, P. and Richard, E.
Abstract:
The north Balearic front forms the southern branch of the cyclonic gyre in the North Western Mediterranean Sea. Its dynamics exhibits significant seasonal variability. During autumn, the front spreads northward during the calm wind periods and rapidly moves back southward when it is exposed to strong northerly wind events such as the Tramontane and Mistral. These strong winds considerably enhance the air–sea exchanges. To investigate the role of air–sea exchanges on the dynamics of the North Balearic front, we used observations and a high-resolution air–sea coupled modelling system, and focused on a strong wind event observed in late October 2012, which was well-documented during the Hydrological Cycle Mediterranean Experiment. The coupled model was able to correctly reproduce the 4°C sea surface temperature drop recorded in the frontal zone together with the observed southwestward displacement of the front. The comparison between the weak wind period preceding the event and the strong wind event itself highlighted the impact of the wind regime on the air–sea coupling, with both thermal and dynamical couplings during the low wind period and mainly thermal coupling during the strong wind period. The effect of air–sea exchanges on the stratification variations in the frontal zone was investigated with a stratification budget diagnosis. The stratification variations are controlled by diabatic air–sea buoyancy flux, adiabatic Ekman buoyancy flux, and advective processes. During the strong wind period, the Ekman buoyancy flux was found to be three times greater than the air–sea buoyancy flux and thus played a major role in the destratification of the frontal zone. The role of Ekman pumping and inertial wave on the advective processes is also discussed.
Reference:
Seyfried, L., Estournel, C., Marsaleix, P. and Richard, E., 2018: Dynamics of North Balearic Front during an autumn Tramontane and Mistral storm: air-sea coupling processes and stratification budget diagnosticOcean Science Discussions, 2018, 1-33.
Bibtex Entry:
@Article{Seyfried2018,
  author        = {Seyfried, L. and Estournel, C. and Marsaleix, P. and Richard, E.},
  title         = {Dynamics of North Balearic Front during an autumn Tramontane and Mistral storm: air-sea coupling processes and stratification budget diagnostic},
  journal       = {Ocean Science Discussions},
  year          = {2018},
  volume        = {2018},
  pages         = {1-33},
  abstract      = {The north Balearic front forms the southern branch of the cyclonic gyre in the North Western Mediterranean Sea. Its dynamics exhibits significant seasonal variability. During autumn, the front spreads northward during the calm wind periods and rapidly moves back southward when it is exposed to strong northerly wind events such as the Tramontane and Mistral. These strong winds considerably enhance the air–sea exchanges. To investigate the role of air–sea exchanges on the dynamics of the North Balearic front, we used observations and a high-resolution air–sea coupled modelling system, and focused on a strong wind event observed in late October 2012, which was well-documented during the Hydrological Cycle Mediterranean Experiment. The coupled model was able to correctly reproduce the 4°C sea surface temperature drop recorded in the frontal zone together with the observed southwestward displacement of the front. The comparison between the weak wind period preceding the event and the strong wind event itself highlighted the impact of the wind regime on the air–sea coupling, with both thermal and dynamical couplings during the low wind period and mainly thermal coupling during the strong wind period. The effect of air–sea exchanges on the stratification variations in the frontal zone was investigated with a stratification budget diagnosis. The stratification variations are controlled by diabatic air–sea buoyancy flux, adiabatic Ekman buoyancy flux, and advective processes. During the strong wind period, the Ekman buoyancy flux was found to be three times greater than the air–sea buoyancy flux and thus played a major role in the destratification of the frontal zone. The role of Ekman pumping and inertial wave on the advective processes is also discussed.},
  copublication = {4: 4 Fr},
  doi           = {10.5194/os-2018-14},
  owner         = {hymexw},
  timestamp     = {2019-01-28},
  url           = {https://www.ocean-sci-discuss.net/os-2018-14/},
}