Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
PICS
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Hertig, E. and Tramblay, Y.
Abstract:
The complexity of the Mediterranean climate with its high precipitation variability and its unequal seasonal distribution with a wet season from approximately October to April and a dry season in summer set general conditions for a high vulnerability of the Mediterranean area to droughts. In the last few decades the risk of drought episodes appears to be enhanced in the Mediterranean area due to temperature increases combined with precipitation decreases. This general change towards warmer and dryer conditions is expected to continue in the future. In the present study droughts are represented by the Standardized Precipitation Index (SPI), at 114 stations located across the Mediterranean area. The SPI is a normalized measure of drought severity relative to a specific location, obtained from rainfall totals aggregated over different time periods. This allows a comparison of different locations and the delineation of homogeneous regions with similar SPI variability. 13 regions have been identified. A downscaling approach using circulation types based on geopotential heights and relative humidity as predictors has been set up to downscale the SPI time series in the different regions. The downscaling approach has been validated using running 21years validation periods, in order to assess the skill of the method during different climatic conditions and to detect possible non-stationarities in the predictors-predictand relationships. Results show that the downscaling method provided satisfactory results, except for the most arid regions. Future projections, provided from a three member ensemble of the MPI-ESM-LR model under scenario RCP 8.5, indicate an increase in the drought severity and occurrence for the whole Mediterranean region for the period 2070–2100.
Reference:
Hertig, E. and Tramblay, Y., 2017: Regional downscaling of Mediterranean droughts under past and future climatic conditionsGlobal and Planetary Change, 151, 36-48. (Climate Variability and Change in the Mediterranean Region)
Bibtex Entry:
@Article{Hertig2017,
  author        = {Hertig, E. and Tramblay, Y.},
  title         = {Regional downscaling of Mediterranean droughts under past and future climatic conditions},
  journal       = {Global and Planetary Change},
  year          = {2017},
  volume        = {151},
  pages         = {36-48},
  month         = apr,
  issn          = {0921-8181},
  note          = {Climate Variability and Change in the Mediterranean Region},
  abstract      = {The complexity of the Mediterranean climate with its high precipitation variability and its unequal seasonal distribution with a wet season from approximately October to April and a dry season in summer set general conditions for a high vulnerability of the Mediterranean area to droughts. In the last few decades the risk of drought episodes appears to be enhanced in the Mediterranean area due to temperature increases combined with precipitation decreases. This general change towards warmer and dryer conditions is expected to continue in the future. In the present study droughts are represented by the Standardized Precipitation Index (SPI), at 114 stations located across the Mediterranean area. The SPI is a normalized measure of drought severity relative to a specific location, obtained from rainfall totals aggregated over different time periods. This allows a comparison of different locations and the delineation of homogeneous regions with similar SPI variability. 13 regions have been identified. A downscaling approach using circulation types based on geopotential heights and relative humidity as predictors has been set up to downscale the SPI time series in the different regions. The downscaling approach has been validated using running 21years validation periods, in order to assess the skill of the method during different climatic conditions and to detect possible non-stationarities in the predictors-predictand relationships. Results show that the downscaling method provided satisfactory results, except for the most arid regions. Future projections, provided from a three member ensemble of the MPI-ESM-LR model under scenario RCP 8.5, indicate an increase in the drought severity and occurrence for the whole Mediterranean region for the period 2070–2100.},
  copublication = {2: 1 De, 1 Fr},
  doi           = {https://doi.org/10.1016/j.gloplacha.2016.10.015},
  keywords      = {Droughts, Mediterranean area, Climate change, Statistical downscaling},
  owner         = {hymexw},
  timestamp     = {2018-12-17},
  url           = {http://www.sciencedirect.com/science/article/pii/S0921818116304684},
}